CS 267 Applications of Parallel Computers
Lecture 11:

Sources of Parallelism and Locality
(Part 3)

Tricks with Trees

David H. Bailey

Based on previous notes by Jim Demmel
and Dave Culler

http://lwww.nersc.gov/~dhbailey/cs267

Recap of last lecture

° ODEs

» Sparse Matrix-vector multiplication
» Graph partitioning to balance load and minimize communication

° PDEs

* Heat Equation and Poisson Equation

» Solving a certain special linear system T

 Many algorithms, ranging from
- Dense Gaussian elimination, slow but very general, to
- Multigrid, fast but only works on matrices like T

Outline

° Continuation of PDEs
« What do realistic meshes look like?

° Tricks with Trees

Partial Differential Equations
PDEs

Poisson’s equation in 1D

° Solve Tx=b where

s \
2 1 :
Graph and “stencil”
-1 2 1
-1 2 -1 €cE— e —
T =
1 2 -1 2 -1
-1 2

Poisson’s equation in 2D

° Solve Tx=b where

(a4 -1 1 \ Graph and “stencil”
1 4 4 -1
1 4 1
-1 4 -1 -1
T = 1 1 4 4 1
-1 1 4 1
-1 4 -1
-1 1 4 -
\ -1 1 4

° 3D is analogous

Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2
° Band LU N2 N N3/2 N
° Jacobi N2 N N N
° Explicit Inv. N2 log N N2 N2
° Conj.Grad. N 3/2 N Y2*log N N N
° RB SOR N 3/2 N 1/2 N N
° Sparse LU N 3/2 N 1/2 N*log N N
° FFT N*log N log N N N
° Multigrid N log? N N N
° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Mflop/s versus Run Time

° Problem: Iterative solver for a convection-diffusion
problem; run on a 1024-CPU NCUBE-2.

° Reference: Shadid and Tuminaro, SIAM Parallel
Processing Conference, March 1991.

Solver Flops CPU Time Mflop/s
Jacobi 3.82x10'2 2124 1800
Gauss-Seidel 1.21x10"2 885 1365
Least Squares 2.59x101 185 1400
Multigrid 2.13x10° 6.7 318

° Which solver would you select?

Relation of Poisson’s equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at 0 is
-(x,y,2)/rA3, where r = sqrt(x *+y* +z°)

° Force is also gradient of potential V = -1/r
=-(d/dx V, d/dy V, d/dz V) = -grad V

>V satisfies Poisson’s equation (try it!)

Ralationchip of Potential ¥V and Foree —grad V in 2D

Comments on practical meshes

° Regular 1D, 2D, 3D meshes

* Important as building blocks for more complicated meshes

° Practical meshes are often irregular

- Composite meshes, consisting of multiple “bent” regular meshes
joined at edges

* Unstructured meshes, with arbitrary mesh points and
connectivities

- Adaptive meshes, which change resolution during solution
process to put computational effort where needed

Composite mesh from a mechanical structure

Mechanical Structure with Mesh

E 1 1 1 1 1 1 1 1 1
1.5 =
1F =
\§ RARAE A f

D5F B -

o\ i 7 -

—05f B -
KA

- T -

=18 2
i

o _

A e s o o 5 s 5 & %

Converting the mesh to a matrix

Mesh bered in natural ord 3 :
ST UMbered In niaturat order Matrix &, in natural order

(266:529) S30:370) (G71:d0) 1407447) ladeded) L ——

50_.::-.:. cr

100 F

L hag)

YRR TR 150
S RN e |
i) : 200 -

230

300 -

330

400 -

| |:5|u:91] | tggjlgg} I|:134:1'-"5|} | | 450+

| |
— =3 - -1 0 1 2 3 4 4]

Effects of Ordering Rows and Columns on Gaussian Elimination

1oof
ook
300F

4001

A in natural order

0 100 200 300 400

m =391

1007

200+

SO0+

4001

Cholesky factor, flops=29E823

0 100 200 00 400
nz= 11533, red=fill-in

1007

200F

S00F

400

A after minimum degree

. T
i ™ "?::"!" Ak
-r D

[PR LR

= ' HERH i
L P e
' 5

0 100 200 300 400

m =3971

0
i
1007
l'::-.;
200+ -
SO0t o
4DD B dg_
a gt
s & mpy -mj?'!_;i

Cholesky factor, flops=198236

0 100 200 300 400
me =8440, red =filin

t solution)

irec

NASA Airfoil in 2D (d

Irregular mesh

Finite Element Mesh of NASA Airdoil

o

TR

- n
T
| nﬁﬁﬂfw.%#dmha.

Fittn

SR

e

%
«rﬂﬁ

7

0.3 0.4 0.5 D& o7 o.& g

o=

DA

4253 qrid points

Structure of Cholesky factor L of A

Structure of A

0

10007

2000+

3000+

40001

1000}

2000+

3000+

4000 ¢

2000 3000

1000
nnz{J=214755 flops

2000 3000 4000

nnz{A)=25831

1000

4000

11533587

0

0

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion

°John Bell and Phil Colella at LBL (see class web page for URL)

°Goal of Titanium is to make these algorithms easier to implement
in parallel

Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place
* Triangle, a 2D mesh partitioner by Jonathan Shewchuk
« 3D harder!

° How to partition them
* ParMetis, a parallel graph partitioner

° How to design iterative solvers
 PETSc, a Portable Extensible Toolkit for Scientific Computing

* Prometheus, a multigrid solver for finite element problems on
irregular meshes

« Titanium, a language to implement Adaptive Mesh Refinement

° How to design direct solvers
« SuperLU, parallel sparse Gaussian elimination

° These are challenges to do sequentially, the more so
in parallel

Tricks with Trees

Outline

° Alog n lower bound to compute any function in parallel
° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(Iogzn) time

° Inverting n-by-n dense matrices in O(log? n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

A log n lower bound to compute any function of n variables

> Assume we can only use binary operations, one per
time unit

° After 1 time unit, an output can only depend on two
inputs

° Use induction to show that after k time units, an
output can only depend on 2k inputs

° A binary tree performs such a computation

Broadcasts and Reductions on Trees

iR - ~ = = = -~ =

al+al +aZ+a3+ad+ad+ap+at
e
,--"", \""x
au+aljjiij;;::::::”##ffff- H‘HHH‘HH“‘HH:::::;Qiizf:?ﬁ+aT
aﬂ+ 34+ +a?

/\ /\ /\ /\

a[l 3132 3334 aSaﬁ a?

Binary Tree Addition on a Message Passing System

° Suppgse we wish to compute the global sum of x_i,
contained on processori. Assume N = 2%n
processors.

° Algorithm on processor kp, 0 <= kp <n:

dofork=0tom-1:
« Compute ip := ieor (kp, 2*k)
* Send current x to processor ip.
» Receive s from processor ip.
* X:=Xx+s

° enddo
° At completion of loop, processor 0 has global sum.

° This scheme can be easily generalized to non-
power-of-two processor counts and to more general
arrays.

Parallel Prefix, or Scan

° If “+” is an associative operator, and x[0],...,x[p-1] are input
data then parallel prefix operation computes

y[j] = x[0] + x[1] + ... + x[j] for j=0,1,...,p-1
° Notation: j:k mean x[j]+x[j+1]+...+x[k], blue is final value

1] 1 2 3 4 3 i T

\ I

|
\I
1

RN

Mapping Parallel Prefix onto a Tree - Details

° Up-the-tree phase (from leaves to root)

1) Get values L and R from left and right children
2) Save L in alocal register M
3) Pass sum S = L+R to parent

° Down the tree phase (from root to leaves)

1) Get value S from parent (the root gets 0)
2) Send S to the left child

3) Send S + M to the right child

° By induction, S = sum of all leaves to left of subtree rooted at the parent

IImtha Trop

Tinam tha T
up e area LTS A Tel

5 /
4 p
/ N 0. AN
4 3 4 3
[} 2 3 4 1] 4 (i) 11
K] 2 4 1 3 2 4 1
' O O O O O
T T T
= 3 1 2 1] 4 1 1 3 a

P e
=]
= T
ek
L B wrdinad
b

(]
L

Adding two n-bit integers in O(log n) time

° Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit
binary numbers

° We want their sum s = a+b = s[n]s[n-1]...s[0]
c[-1]1=0 ... rightmost carry bit
fori=0 to n-1
cli] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and Db[i]) ... next carry bit
s[i] = a[i] xor bl[i] xor cfi-1]
° Challenge: compute all c[i] in O(log n) time via parallel prefix

for all (0 <=1i<=n-1) p[i] = ali] xor bJ[i] ... propagate bit
forall (0 <=i<=n-1) g[i]=aliland b[i]] ... generate bit

[c[i]} = [(pli] and c[i-1]) or gm}= {p[i] g[i]} * [C[i-ﬂ} = C[il *[C[i-ﬂ}
1 1 0 1 1 1

... 2-by-2 Boolean matrix multiplication (associative)

= C[i]* C[i-1]* ... C[0] { 0 }
1
... evaluate each PJi] = C[i] * C[i-1] * ... * C[0] by parallel prefix

° Used in all computers to implement addition - Carry look-ahead

Multiplying n-by-n matrices in O(log n) time
>Forall (1 <=1,k <=n) P(ij,k) = A(i,k) * B(k,j)

» cost =1 time unit, using n*3 processors

°Forall(1<=1j<=n) C(ij) =k§=1p(i,j,k)

» cost = O(log n) time, using a tree with n*3 / 2 processors

Inverting triangular n-by-n matrices in O(log? n) time

° Fact: -1 1
{A o} | AT o
CB 1 1 -
-B CA B
° Function Trilnv(T) ... assume n = dim(T) = 2™ for simplicity
If T is 1-by-1
return 1/T
else

. Write T = [A o}
C B
In parallel do {
invA = Trilnv(A)
invB = Trilnv(B) } ... implicitly uses a tree
newC = -invB * C * invA
Return |[invA 0
newC invB

° time(Trilnv(n)) = time(Trilnv(n/2)) + O(log(n))

« Change variable to m = log n to get time(Trilnv(n)) = O(log?n)

Inverting Dense n-by-n matrices in O(log? n) time

> Lemma 1: Cayley-Hamilton Theorem
« expression for A1 via characteristic polynomial in A

° Lemma 2: Newton’s Identities

« Triangular system of equations for coefficients of characteristic
polynomial
n

° Lemma 3: trace(A¥) = £1A" [l = X D (A"
i= i=
° Csanky’s Algorithm (1976)

1) Compute the powers A2, A3, ...,A™" by parallel prefix
cost = O(log? n)
2) Compute the traces s, = trace(A¥)
cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
cost = O(log? n)
4) Evaluate A1 using Cayley-Hamilton Theorem
cost = O(log n)

° Completely numerically unstable

Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -, *,
/, parentheses, and n variables, where each
appearance of each variable is counted separately

° Can think of E as arbitrag/ expression tree with n
leaves (tgu;.- variables) and internal nodes labelled by
+5 =y * an

° Theorem (Brent): E can be evaluated in O(log n)
time, if we reorganize it using laws of commutativity,
associativity and distributivity

> Sketch of (modern) proof: evaluate expression tree E
greedily by
» collapsing all leaves into their parents at each time step
« evaluating all “chains” in E with parallel prefix

Evaluating recurrences

° Let x; = fi(x;.4), f; arational function, x, given
° How fast can we compute x_?

° Theorem (Kung): Suppose degree(f;) = d for all i
* If d=1, x, can be evaluated in O(log n) using parallel prefix
- If d>1, evaluating x, takes Q(n) time, i.e. no speedup is possible

> Sketch of proof when d=1
X = fi(x;_1) = (@ * %4 + b /(¢ * x4 +d;) can be written as
X; = num; / den; = (a; * num;_4 + b; * den;_4)/(c; * num,_4 + d; * den;_4) or
{numi} = {al bﬂ *rumi_»l} = MI *{numi_»]} = MI * M|_1 LT M1*{numo}
dem; c; d;| |den;_4 den;_4 deng

Can use parallel prefix with 2-by-2 matrix multiplication

> Sketch of proof when d>1
- degree(x;) as a function of x, is d
» After k parallel steps, degree(anything) <= 2k
« Computing x; take Q(i) steps

Summary of tree algorithms

° Lots of problems can be done quickly - in theory -
using trees

° Some algorithms are widely used
* broadcasts, reductions, parallel prefix
« carry look ahead addition

°> Some are of theoretical interest only
» Csanky’s method for matrix inversion
« Solving general tridiagonals (without pivoting)
* Both numerically unstable
« Csanky needs too many processors

° Embedded in various systems
 CM-5 hardware control network
« MPI, Split-C, Titanium, NESL, other languages

